Weak Acid Equilibria

$$HA + H_2O \Rightarrow H_3O^+ + A^-$$

$$K_a = \frac{[\mathrm{H_3O}^+][\mathrm{A}^-]}{[\mathrm{HA}]}$$

- K_a is a constant for a given acid at a particular temperature regardless of the analytical concentration of the acid.
- The magnitude of K_a indicates acid strength.
 - ✓ Strong acids have $K_a >> 1$.
 - ✓ Weak acids have $K_a < 1$.
 - ✓ The more negative the exponent power of ten, the weaker the acid is and the less tendency it has to dissociate.

Leveling of Strong Acids

- When any very strong acid $(K_a >> 1)$ is added to water, its strength is said to be **leveled** to that of H_3O^+ .
 - The hydronium ion is the strongest acid that can exist in molecular form in water.
 - Any stronger acid must dissociate to form H₃O⁺ and its formal weak conjugate base (which has no real base character).

$$HCl + H_2O \rightarrow Cl^- + H_3O^+$$
 Equilibrium lies right.
 \Rightarrow HCl is leveled

$$HNO_3 + H_2O \rightarrow NO_3^- + H_3O^+$$
 Equilibrium lies right.
 $\Rightarrow HNO_3$ is leveled

Weak Base Equilibria

$$B + H_2O \rightleftharpoons BH^+ + OH^-$$

$$K_b = \frac{[\mathrm{BH}^+][\mathrm{OH}^-]}{[\mathrm{B}]}$$

- K_b is a constant for a particular base in all its solutions.
- The magnitude of K_b indicates base strength.
 - ✓ Strong bases have $K_b >> 1$.
 - ✓ Weak bases have $K_b < 1$.
 - ✓ The more negative the exponent power of ten, the weaker the base is and the less tendency it has to hydrolyze.

Leveling of Strong Bases

When any very strong base $(K_b >> 1)$ is added to water, its strength is said to be leveled to that of OH⁻.

- The hydroxide ion, OH⁻, is the strongest base that can exist in its molecular form in water.
- Any stronger base will be leveled through hydrolysis to make OH⁻ and the appropriate conjugate acid (which as no real acid strength).

$$O^{2-} + H_2O \rightarrow OH^- + OH^-$$
 Equilibrium lies right $\rightarrow O^{2-}$ is leveled

$$H^- + H_2O \rightarrow H_2 + OH^-$$
 Equilibrium lies right $\Rightarrow H^-$ is leveled

Ordered List of Acids and Conjugate Bases

- ✓ We can construct a table of acids and their conjugate bases, ordered according to acid strength.
 - Stronger acids with larger K_a 's at the top.
 - Weaker acids with smaller K_a 's at the bottom.
- Numerical values of K_a are not listed for the truly strong acids, all of which have $K_a >> 1$.
- ✓ Conjugate base strength runs in the opposite sense of acid strength on the table.
 - Weaker conjugate bases at the top right.
 - Stronger conjugate bases at the bottom right.

TABLE OF CONJUGATE ACID-BASE PAIRS

Acid	Base	K_a (25 °C)	
HClO ₄	ClO ₄		
H_2SO_4	HSO ₄		
HCl	Cl ⁻		
HNO ₃	NO_3^-		
H_3O^+	H_2O	1.0	
H_2CrO_4	HCrO ₄	1.8×10^{-1}	
$H_2C_2O_4$ (oxalic acid)	$HC_2O_4^{7-}$	5.90×10^{-2}	
$[H_2SO_3] = SO_2(aq) + H_2O$	HSO ₃	1.71 x 10 ⁻²	
HSO ₄	SO_4^{2-}	1.20×10^{-2}	
H_3PO_4	$H_2PO_4^-$	7.52×10^{-3}	
$Fe(H_2O)_6^{3+}$	$Fe(H_2O)_5OH^{2+}$	1.84×10^{-3}	
$H_2C_8H_4O_4$ (o-phthalic acid)	$HC_8H_4O_4^-$	1.30×10^{-3}	
$H_2C_4H_4O_6$ (tartaric acid)	$HC_4^{\circ}H_4^{\circ}O_6^{\circ}$	1.04×10^{-3}	
HF	F ⁻	6.8×10^{-4}	
$Hg(H_2O)_6^{2+}$	$Hg(H_2O)_5OH^+$	2.6×10^{-4}	
HCO ₂ H (formic acid)	HCO ₂ -	1.8×10^{-4}	
$Cr(H_2^2O)_6^{3+}$	$Cr(H_2^2O)_5OH^{2+}$	1.6 x 10 ⁻⁴	
C ₆ H ₅ CO ₂ H (benzoic acid)	$C_6H_5CO_2^{-}$	6.46×10^{-5}	
HC ₂ O ₄ ⁻ (hydrogen oxalate)	$C_2O_4^{2-}$	6.40×10^{-5}	
$HC_4H_4O_6^-$ (hydrogen tartrate)	$C_4H_4O_6^{2-}$	4.55×10^{-5}	
CH ₃ CO ₂ H (acetic acid)	CH ₃ CO ₂ ⁻	1.76×10^{-5}	
$Be(H_2O)_4^{2+}$	$Be(H_2O)_3OH^+$	$\sim 1 \times 10^{-5}$	
$Al(H_2O)_6^{3+}$	$Al(H_2O)_5OH^{2+}$	7.9 x 10 ⁻⁶	
$HC_8H_4O_4^{-}$ (hydrogen phthalate)	$C_8H_4O_4^{2-7}$	3.1 x 10 ⁻⁶	
Cd(H ₂ O) ₆ ²⁺	$Cd(H_2O)_5OH^+$	8.32×10^{-7}	
H_2CO_3	HCO ₃	4.3×10^{-7}	
HCrO ₄	CrO ₄ ²⁻	3.20×10^{-7}	
$Cu(H_2O)_6^{2+}$	$Cu(H_2O)_5OH^+$	1.6 x 10 ⁻⁷	
H_2S	HS ⁻	1.2×10^{-7}	
$H_2PO_4^-$	HPO ₄ ²⁻	6.23 x 10 ⁻⁸	
HSO ₃	SO_3^{2-}	6.2 x 10 ⁻⁸	
HOCI	OCl ⁻	3.0 x 10 ⁻⁸	
Pb(H ₂ O) ₆ ²⁺	Pb(H ₂ O) ₅ OH ⁺	1.5×10^{-8}	
HOBr	OBr-	2.06 x 10 ⁻⁹	
$Co(H_2O)_6^{2+}$	Co(H ₂ O) ₅ OH ⁺	1.3 x 10 ⁻⁹	
H_3BO_3 or $B(OH)_3$	B(OH) ₄ ⁻	7.3×10^{-10}	
NH ₄ ⁺	NH ₃	5.65×10^{-10}	
$Zn(H_2O)_4^{2+}$	$Zn(H_2O)_3OH^+$	2.5×10^{-10}	
HCO ₃ -	CO_3^{2-}	5.61 x 10 ⁻¹¹	
$Ni(H_2O)_6^{2+}$	$Ni(H_2O)_5OH^+$	2.5×10^{-11}	
HOI	OI ⁻	2.3×10^{-11}	
$Fe(H_2O)_6^{2+}$	$Fe(H_2O)_5OH^+$	$\sim 1 \times 10^{-11}$	
$Mn(H_2O)_6^{2+}$	$Mn(H_2O)_5OH^+$	$\sim 6 \times 10^{-12}$	
$Mg(H_2O)_6^{2+}$	$Mg(H_2O)_5OH^+$	$\sim 4 \times 10^{-12}$	
$Ag(H_2O)_2^+$	$Ag(H_2O)OH(s)$	$\sim 7 \times 10^{-13}$	
$Al(H_2O)_3(OH)_3(s)$	AI(H2O)2(OH)4-	$\sim 4 \times 10^{-13}$	
HPO ₂ ²⁻	PO ₄ ³⁻	3.6×10^{-13}	
$Ca(H_2O)_6^{2+}$	$Ca(H_2O)_5OH^+$	3.2×10^{-13}	
$Zn(H_2O)_4(OH)_2(s)$	$Zn(H_2O)_3(OH)_3^-$	(?)	
H_2O	OH ⁻	1.0×10^{-14}	
HS ⁻	S ²⁻	$\sim 1 \times 10^{-19}$	

Polyprotic Acids

- Leach hydrolysis step of a polyprotic acid has a separate K_a .
- ✓ Successive dissociations of polyprotic acids lie progressively less to the right, so K_a 's become smaller at each step.

Oxalic Acid:

$$H_2C_2O_4 + H_2O \rightleftharpoons H_3O^+ + HC_2O_4^ K_a = K_1 = 5.90 \times 10^{-2}$$

 $HC_2O_4^- + H_2O \rightleftharpoons H_3O^+ + C_2O_4^{2-}$ $K_a = K_2 = 6.40 \times 10^{-5}$

Sulfuric Acid:

$$H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4^- \qquad K_a = K_1 >> 1$$

 $HSO_4^- + H_2O \rightleftharpoons H_3O^+ + SO_4^{2-} \qquad K_a = K_2 = 1.20 \text{ x } 10^{-2}$

Sulfuric acid is a strong acid (leveled) only in its first-step hydrolysis.

Hydrated Cations as Acids

- ✓ Hydrated cations, which have a certain number of H_2O molecules surrounding them (often 6), may be acidic.
- ✓ Hydrolysis follows the general pattern of a weak acid equilibrium:

$$Al(H_2O)_6^{3+} + H_2O \Rightarrow H_3O^+ + Al(H_2O)_5(OH)^{2+}$$

 $K_a = 7.9 \times 10^{-6}$

- ✓ Cations with high charge density, such as Al³+ and the transition metal cations, are capable of being acidic.
- ✓ Cations with low charge density, such as alkali metal and heavier alkaline earth metal cations, show no appreciable acidity.
 - The lightest alkaline earth cations in water, $Mg(H_2O)_6^{2+}$ and $Ca(H_2O)_6^{2+}$, are extremely weak acids, as their very small K_a values indicate.

Conjugate Base K_b's

$$A^- + H_2O \rightleftharpoons HA + OH^-$$

$$K_b = \frac{[HA][OH^-]}{[A^-]}$$

Relationship Between K_a of an Acid HA and K_b of Its Conjugate Base A⁻

$$HA + H_2O \Rightarrow H_3O^+ + A^ K_a = \frac{[H_3O^+][A^-]}{[HA]}$$
 $A^- + H_2O \Rightarrow HA + OH^ K_b = \frac{[HA][OH^-]}{[A^-]}$

$$2H_2O \Rightarrow H_3O^+ + OH^- \qquad K_w = [H_3O^+][OH^-]$$

$$K_a \times K_b = \frac{[H_3O^+][A^-]}{[HA]} \frac{[HA][OH^-]}{[A^-]}$$

$$= [H_3O^+][OH^-] = K_w$$

Relationship Between K_a and K_b for a Conjugate Pair

For an acid HA and its conjugate base A⁻, or a base B and its conjugate acid BH⁺, the relationship between the hydrolysis constants for the conjugate pair is given by

$$K_a^{\mathrm{HA}} K_b^{\mathrm{A}^-} = K_w$$

$$K_b^{\mathrm{B}} K_a^{\mathrm{BH}^+} = K_w$$

When are conjugate bases real bases?

✓ Conjugate bases of weak acids are true bases.

Example: Acetate ion, OAc⁻, the conjugate base of acetic acid, HOAc.

$$OAc^- + H_2O \Rightarrow HOAc + OH^-$$

$$K_b (\text{OAc}^-) = K_w / K_a (\text{HOAc}) = 5.68 \times 10^{-10}$$

A solution of sodium acetate, NaOAc, will be basic.

$$NaOAc \rightarrow Na^{+} + OAc^{-}$$

 $OAc^{-} + H_{2}O \rightleftharpoons HOAc + OH^{-}$
 $pH > 7$

When are conjugate bases not basic?

✓ Aprotic (no ionizable H⁺) anions of strong acids are not basic, except in a formal sense.

Example: Chloride ion, Cl⁻, the conjugate base of hydrochloric acid, HCl.

$$Cl^- + H_2O \Rightarrow HCl + OH^-$$

Equilibrium lies completely left!

$$K_b(\text{C1}^-) = K_w/K_a(\text{HC1}) = 1 \times 10^{-14}/(>>1) = <<1 \times 10^{-14}$$

A solution of NaCl will be neutral.

$$NaCl > Na^{+} + Cl^{-}$$

$$pH = 7$$

Polyprotic Conjugate Bases

✓ Aprotic conjugate bases of polyprotic acids can function as polyprotic bases, whose K_b values can be calculated from the K_a values of their conjugate acids.

$$CO_3^{2-} + H_2O \Rightarrow HCO_3^{-} + OH^{-}$$

$$K_b = K_w / K_a (HCO_3^-) = 1.0 \times 10^{-14} / 4.8 \times 10^{-11} = 2.1 \times 10^{-4}$$

$$HCO_3^- + H_2O \Rightarrow [H_2CO_3] + OH^-$$

$$K_b = K_w / K_a (H_2 CO_3) = 1.0 \times 10^{-14} / 4.2 \times 10^{-7} = 2.4 \times 10^{-8}$$

 $\checkmark K_b$ values become progressively smaller with successive hydrolyses.

Tabulated K_b Values

 $\checkmark K_b$ values for neutral weak bases are frequently given in tables.

Base	NH ₃	CH ₃ NH ₂	$C_2H_5NH_2$	$(CH_3)_3N$
K_b	1.8×10^{-5}	4.4 x 10 ⁻⁴	6.4 x 10 ⁻⁴	6.4×10^{-5}

- K_a values for conjugate acids can be calculated from K_a $\times K_b = K_w$.
- Sometimes conjugate acids and their K_a 's appear in acid tables, from which K_b 's for the neutral bases can be calculated, using $K_a \times K_b = K_w$.

pK_a and pK_b

 $\checkmark K_a$ and K_b values are often listed as their negative base10 logarithms.

$$pK_a = -\log K_a$$

$$pK_b = -\log pK_b$$

- ✓ The larger the positive value of pK, the smaller the value of K is.
- ✓ Strong acids and bases have negative values of pK_a and pK_b , respectively.